Lunar Influence on the Electrochemical Production of Colloidal Silver

by Michael Theroux

It is well known that the quality of homemade electrochemical colloidal silver varies with every batch made. While some of this variance can occur due to mechanical and/or operator malfunction, such as improper voltage due to low batteries, the use of impure waters (other than distilled), incorrect duration of electrode contact, etc., there are other factors which play an important role in producing high quality electrochemical silver colloids.

The research work of Eugen and Lily Kolisko in the 1920s and 30s introduced the idea that certain celestial events had a profound effect on metals, and that the ancient traditional relationships between specific metals and planets could be demonstrated via laboratory experiment. The process of these experiments involved placing cylinders of special filter paper into dishes which held measured amounts of the various metal salts. Then, the capillary patterns which subsequently emerged, could be studied with reference to specific solar system events (a complete detailed description of the experimental process is contained in the book, The Metal-Planet Relationship by Nick Kollerstrom, available from BSRF). Early on, the Koliskos observed the effects that the moon’s phases had on solutions of silver chloride, and that profound effects could be viewed during lunar eclipses.

This information prompted the idea that lunar influence could produce exceptional differences in the quality of electrochemically produced colloidal silver. We immediately began preparing the necessary experimental equipment for the upcoming lunar eclipse (March 23, 1997, 8:45PM PST). Two CS-300 colloidal silver generators were used for the electrochemical process and a digital countdown timer would ensure that each batch ran for the exact prescribed time of 20 minutes. The first and second of four batches were initiated just prior to, and during the eclipse, and the last two just after the eclipse. The electrodes were checked and cleaned before each batch was run to assure a consistent voltage throughout the experimental run. The water used was distilled and was provided from the same bottle, and then pre-measured into 8 oz. glasses of identical size and make. Normal batches of colloidal silver produced in this way yield a count of about 6000 to 8000 ppb (parts per billion) of silver.

It had been noted with earlier batches of colloidal silver that a simple taste test easily detected differences in quality. Some batches would produce a heavy metallic taste, while others had no distinguishing differences from plain distilled water. After the eclipse experiment was completed, an initial taste test was conducted on the four batches. The first batches run just before and during the eclipse were perceptually absent of the characteristic metallic taste usually associated with a strong batch of colloidal silver. The two batches after the eclipse proved very metallic in taste. These samples along with a control were then taken to a local lab for analysis. The results shown in Figure 1 indicate that the amount of silver began to decrease near the eclipse, with a reduction to 1900 ppb during the eclipse. The last batch revealed a rise
toward normal levels.

This data strongly suggests a lunar influence on the electrochemical production of colloidal silver. But, the lunar influence presides over other factors which are a part of the experimental test setup. Most are familiar with the lunar effect on tides, and going back into the distant past, many understood that the moon exerts a powerful influence on water itself. Folklore and fact abound with tales of lunar influence upon water, moisture, and other liquids. Plutarch instructed that the full moon caused such an increase in moisture that it made timber, wheat, and other grains which were cut at this time more likely to become decayed and rotten. If cut at the new moon, they would be dry and brittle.

The medieval medical practise of bleeding was to be governed according to lunar phases and their attendant proportions of moisture. Dr. E. J. Andrews, in 1960, confirmed that bleeding is worse around full moons than at any other time. Thousands of post-op records were compared to the dates of lunar phases showing a remarkable 82 percent of post-op bleeding episodes occurred on or around the full moon. Several other researchers and doctors would confirm his findings.

The medicinal effects of many folk remedies were also governed by the phases of the moon due to fluctuating moisture content. Bread was said to rise and leaven better during a full moon, owing to a better retention of moisture. There is a vast catalog of such correspondences between the moon and water, and more still with recent scientific investigations. G. Piccardi, a pioneer on water structure and water activation, demonstrated that cosmic energy forces are important factors in the modification of standardized laboratory chemical and phase-change experiments. He also discovered a dynamic and energetic movement to the Earth’s path in orbit that corresponds to seasonal changes.

The moon is not without its effects on electricity and electrical conductivity. Variations have been recorded in the electrostatic strength of the atmosphere caused by lunar-phase influenced fluctuations in ionization. H.S. Burr discovered that the electrical potential of trees climaxed during full moons, and was unrelated to fluctuations in barometric pressure, humidity, or the weather. The only outside influence the tree’s electrical potential fluctuation kept pace with was that of the changing phases of the moon. L. Ravitz found that people also possessed peaks of potential difference in accord with full and new moons. E.K. Bigg observed over an 81 year period that magnetic storms peaked in intensity just after full moons, and were lightest around new moons. Disturbances in the earth’s magnetic field have been found to follow lunar cycles.

It is obvious that these associations indicate that the entire process of the electrochemical production of colloidal silver is ruled by lunar influence. For that matter, all chemical processes are inextricably directed by celestial authority. It is essential to understand then, when the most propitious times occur to conceive these suspensions. With respect to the production of colloidal silver, lunar influence tables must be consulted. We know that tides are a direct manifestation of lunar forces, but
there are also atmospheric tides which play an important role in the understanding of how the moon affects chemical reactions. D’Alembert, in 1746, was the first to discover lunar tides in the earth’s atmosphere. Atmospheric tides attend daily and monthly lunar cycles similar to ocean tides. High tide is observed when the moon is directly overhead or on the exact opposite side of the earth. This is called upper and lower transit respectively, or “souths” and “norths”. The highest atmospheric tide can be measured as air pressure, and occurs at lower transit every day. These daily high tides peak twice a month at new and full moons. The highest tides occur when the full or new moon is at perigee (closest approach to the earth), and higher still when the new or full moon at perigee crosses the ecliptic, or geometrical plane formed by the path of the earth’s orbit.

From a quantitative viewpoint, these tides are extremely small causing the barometer to rise only .001 inches in a day. This influence is location dependant, and may be as much as three times higher near the equator as it is in middle latitudes. This still seems too quantitatively minuscule to have any effect on silver electrodes in an 8 oz. glass of water.

Here we must turn to the work of John Alden Knight. In the mid 1920s, while fishing with a friend, he was told about the folkloric "moon-up/moon-down" theory. The basic premise is that fish feed only at certain times of the day, and that the best times could be found when the moon was either "southing" or "northing". Knight went on to develop this theory over the next few decades into what is now known as the "Solunar" (combining Sun and Moon) theory. Of course, this theory didn’t just apply to fish, and he would discover that animals, including humans, would become more active and have more energy at these times than at all other times of the day. One might wonder why they wake up in the middle of the night full of energy only to consult the tables Knight created, and find that a Solunar period was in progress. These periods last anywhere from 1½ to 3 hours dependant on the moon’s relationship to other celestial processes. Minor Solunar periods are indicated during the rising and setting times of the moon, and Major periods are indicated during the two transits. These periods are, of course, location dependant, and Knight has created tables which are available for every major fishing location in the country (see references). The easiest way to roughly calculate this for yourself is to add 6 hours to the rise and set times for the moon. If you are connected to the Internet, you can obtain moon rise and set times for your local area for the entire year by going to the Naval Observatory’s website at http://riemann.usno.navy.mil/aa/data/docs/RS_OneYear.html. Once you have these, simply add 6 hours to the daily rise or set time to find the major periods.

These appear to be the best times for the production of colloidal silver. If on a new or full moon, even better. Although we haven’t had lab tests done on every batch (the cost is $40 per sample), taste tests and light yellow color confirm a fairly good batch every time they have been made during major Solunar periods. Minor periods produce a somewhat fair batch, and in-between times have consistently yielded a poor quality colloid.

Other moon factors to consider are high and low runs/rides, and the traditional full moon names. When the moon "Runs High", or "Rides Low" on the equator, this refers
to how high the moon is in the sky that day. The moon is always highest for that day when it souths, but its height above the southern horizon at southing varies during the month. It’s at its highest above the horizon when it souths on a "Runs High" day. It’s at its lowest on a "Rides Low" day, which happens about two weeks later. On the celestial equator, the moon is about halfway between these extremes and this occurs twice during the month. This is caused by the interaction of the moon’s phases and the seasons. For the Northern hemisphere the midsummer full moon is always low in the sky, whereas the midwinter full moon is nearly overhead.

The traditional names of the full moons for each month of the year represent the qualities possessed by each individual moon. For example, "Harvest Moon" in September was said to be responsible for the ripening of produce. To the Romans, Diana’s day fell at the time of the Harvest Full Moon, and offerings were made to her at this time to ensure the ripening of their fruits. Some of the names associated with each month’s full moon are derived from the traditional Algonquin Native American or Colonial Full Moon Names as follows:

- January Wolf Moon, Old Moon, Winter Moon, Yule Moon.
- February Snow Moon, Hunger Moon, Trapper’s Moon.
- March Worm Moon, Crow Moon, Crust Moon, Sap Moon.
- April Pink Moon, Sprouting Grass Moon, Fish Moon, Egg moon, Planter’s Moon.
- May Flower Moon, Corn Plant Moon, Milk Moon.
- June Strawberry Moon, Rose Moon, Honey Moon, Hot Moon.
- July Buck Moon, Thunder Moon, Summer Moon, Hay Moon.
- September Harvest Moon, Fruit Moon, Dying Grass Moon.
- October Hunter’s Moon.
- November Beaver Moon, Frosty Moon.
- December Cold Moon, Long Nights Moon.

While this is fascinating from the standpoint of folklore, no correlations have yet been made between these full moon names and their respective qualitative influences. The Solunar theory seems to hold true at all times of the year, but can be slightly altered by these other factors, and delicate adjustments to your tables (plus or minus a maximum of 45 minutes) would then be in order.

As you become familiar with these Solunar periods, you will also begin to notice how many other daily events are directed by the moon’s influence. Once the connection has been made, there is no turning back, and many new discoveries concerning celestial influences will surely appear in time. The practical benefits of these correspondences are starting to reveal themselves to us in many ways, and hopefully will point us in the direction of a greater quality of scientific endeavors.
References

8. Personal correspondence — Jack Payne, Solunar Services, Rushville, IN 46173 (Solutar tables may be purchased here for $30 a year).
